15 December 2020

Sources, Effects and Risks of Ionizing Radiation: United Nations Scientific Committee on the Effects of Atomic Radiation 2016 Report to the General Assembly, with Scientific Annexes

Corrigendum

1. Annex A (Methodology for estimating public exposures due to radioactive discharges), page 81, table 25

Column headed "Asia and Pacific"

In the entry for radionuclide ⁵⁴Mn, for 5.3×10^{-9} read 2.7×10^{-9} In the entry for radionuclide ⁵⁸Co, for 8.6×10^{-10} read 4.6×10^{-10} In the entry for radionuclide ⁶⁰Co, for 2.6×10^{-9} read 1.5×10^{-9} In the entry for radionuclide ⁶⁵Zn, for 3.7×10^{-9} read 3.6×10^{-9} In the entry for radionuclide ¹⁰⁶Ru^a, for 6.0×10^{-11} read 3.7×10^{-11} In the entry for radionuclide ¹³¹I, for 8.8×10^{-14} read 7.1×10^{-14} In the entry for radionuclide ¹³⁴Cs, for 3.1×10^{-11} read 1.2×10^{-11} In the entry for radionuclide ¹³⁷Cs^a, for 1.5×10^{-11} read 1.2×10^{-11} In the entry for radionuclide ²³²Th^a, for 1.6×10^{-8} read 1.1×10^{-8} In the entry for radionuclide ²³⁸U^a, for 3.3×10^{-11} read 3.2×10^{-11}

Column headed "Europe"

In the entry for radionuclide ⁵⁴Mn, for 5.2×10^{-9} read 2.6×10^{-9} In the entry for radionuclide ⁵⁸Co, for 8.3×10^{-10} read 4.3×10^{-10} In the entry for radionuclide ⁶⁰Co, for 2.5×10^{-9} read 1.3×10^{-9} In the entry for radionuclide ⁶⁵Zn, for 2.1×10^{-9} read 2.0×10^{-9} In the entry for radionuclide ¹⁰⁶Ru^a, for 5.2×10^{-11} read 2.9×10^{-11} In the entry for radionuclide ¹³¹I, for 8.5×10^{-14} read 6.8×10^{-14} In the entry for radionuclide ¹³⁴Cs, for 3.2×10^{-11} read 2.3×10^{-11} In the entry for radionuclide ¹³⁷Cs^a, for 1.6×10^{-11} read 1.3×10^{-11}

In the entry for radionuclide ²³²Th^a, for 1.5×10^{-8} read 9.1×10^{-9} In the entry for radionuclide ²⁴¹Am, for 6.8×10^{-10} read 6.0×10^{-10}

Column headed "Latin America"

In the entry for radionuclide ⁵⁴Mn, for 5.2×10^{-9} read 2.6×10^{-9} In the entry for radionuclide ⁵⁸Co, for 8.1×10^{-10} read 4.1×10^{-10} In the entry for radionuclide ⁶⁰Co, for 2.4×10^{-9} read 1.2×10^{-9} In the entry for radionuclide ⁶⁵Zn, for 1.4×10^{-9} read 1.3×10^{-9} In the entry for radionuclide ⁹⁰Sr^a, for 5.1×10^{-13} read 5.0×10^{-13} In the entry for radionuclide ¹⁰⁶Ru^a, for 4.8×10^{-11} read 2.5×10^{-11} In the entry for radionuclide ¹³¹I, for 5.7×10^{-14} read 4.0×10^{-14} In the entry for radionuclide ¹³⁴Cs, for 2.6×10^{-11} read 1.6×10^{-11} In the entry for radionuclide ¹³⁷Cs^a, for 1.2×10^{-11} read 7.9×10^{-12} In the entry for radionuclide ²³²Th^a, for 1.3×10^{-8} read 7.4×10^{-9} In the entry for radionuclide ²⁴¹Am, for 4.0×10^{-10} read 3.3×10^{-10}

Column headed "North America"

In the entry for radionuclide ⁵⁴Mn, for 5.3×10^{-9} read 2.7×10^{-9} In the entry for radionuclide ⁵⁸Co, for 8.5×10^{-10} read 4.5×10^{-10} In the entry for radionuclide ⁶⁰Co, for 2.6×10^{-9} read 1.4×10^{-9} In the entry for radionuclide ⁶⁵Zn, for 5.6×10^{-9} read 5.5×10^{-9} In the entry for radionuclide ¹⁰⁶Ru^a, for 5.6×10^{-11} read 3.3×10^{-11} In the entry for radionuclide ¹³¹I, for 8.3×10^{-14} read 6.6×10^{-14} In the entry for radionuclide ¹³⁴Cs, for 3.2×10^{-11} read 1.2×10^{-11} In the entry for radionuclide ¹³⁷Cs^a, for 1.6×10^{-11} read 1.2×10^{-11} In the entry for radionuclide ²³²Th^a, for 1.7×10^{-8} read 1.2×10^{-8} In the entry for radionuclide ²⁴¹Am, for 1.0×10^{-9} read 9.2×10^{-10}

Column headed "West Asia"

In the entry for radionuclide ⁵⁴Mn, for 5.2×10^{-9} read 2.6×10^{-9} In the entry for radionuclide ⁵⁸Co, for 8.0×10^{-10} read 4.0×10^{-10} In the entry for radionuclide ⁶⁰Co, for 2.3×10^{-9} read 1.2×10^{-9} In the entry for radionuclide ⁶⁵Zn, for 5.9×10^{-10} read 5.3×10^{-10} In the entry for radionuclide ⁹⁰Sr^a, for 2.2×10^{-13} read 2.1×10^{-13} In the entry for radionuclide ¹⁰⁶Ru^a, for 4.6×10^{-11} read 2.3×10^{-11} In the entry for radionuclide ¹³¹I, for 4.7×10^{-14} read 3.0×10^{-14} In the entry for radionuclide ¹³⁴Cs, for 2.4×10^{-11} read 1.4×10^{-11} In the entry for radionuclide ¹³⁷Cs^a, for 1.0×10^{-11} read 6.3×10^{-12} In the entry for radionuclide ²³²Th^a, for 1.2×10^{-8} read 6.3×10^{-9} In the entry for radionuclide ²³⁸U^a, for 5.8×10^{-12} read 5.6×10^{-12} In the entry for radionuclide ²⁴¹Am, for 2.3×10^{-10} read 1.5×10^{-10}

2. Annex A (Methodology for estimating public exposures due to radioactive discharges), page 99, table A2

For the existing equation T2 substitute

$$C_{air,progeny}(x) = C_{air,parent}(x) \frac{\lambda_{progeny}}{\lambda_{progeny} - \lambda_{parent}} \left(1 - e^{-(\lambda_{progeny} - \lambda_{parent})\left(\frac{x}{u_a}\right)}\right)$$
(T2)